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Resumen:  Proponemos una estrategia didáctica para estudiantes de 

ciencias de la salud, enfocada en usar funciones para modelar 

fenómenos biológicos. A diferencia de los métodos habituales, que 

suelen enfocarse en manipular álgebra sin un contexto claro, nuestra 

propuesta se basa en un Marco Didáctico Integral de seis fases. Con este 

marco, el estudiante aprende a recolectar datos reales y a interpretar 

críticamente los modelos, desarrollando una comprensión profunda y 

práctica. Detallamos cómo implementar estas actividades, destacamos 

el uso estratégico de tecnología (graficadores dinámicos) y brindamos 

pautas al docente para manejar las discusiones en clase. Así, buscamos 

fomentar una alfabetización matemática útil y conectada a la realidad. 

Palabras clave:   función, enseñanza, didáctica, modelación 

Abstract: We propose a teaching strategy for health science students, 

focused on using functions to model biological phenomena. Unlike 

traditional methods, which tend to focus on manipulating algebra 

without a clear context, our proposal is based on a six-phase 

Comprehensive Teaching Framework. With this framework, students 

learn to collect real data and critically interpret models, developing a 

deep and practical understanding. We detail how to implement these 

activities, highlight the strategic use of technology (dynamic graphing 

tools), and provide guidelines for teachers to manage classroom 

discussions. In this way, we seek to promote useful mathematical 

literacy that is connected to reality 

Keyword: function, teaching, didactic, modelling   
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1._Introducción: El Concepto Transformador de Función 

La función es un concepto esencial y muy versátil en matemáticas, una base fundamental en la 

formación científica. En un curso introductorio sobre modelización, entendemos la función 

principalmente como una regla que asigna a cada valor de entrada (dominio) un único valor de 

salida (codominio o rango). Aunque hay definiciones más formales (como la de pareja 

ordenada), esta manera de ver la función es clave para entender las relaciones entre variables en 

las ciencias aplicadas. 

Pero detrás de esta aparente sencillez, se esconde un gran poder para describir y analizar. Las 

funciones son la herramienta que usa la ciencia para explicar relaciones de dependencia, 

patrones de comportamiento y cómo evolucionan los sistemas. Vemos su importancia 

claramente en muchas disciplinas, desde la física, donde la trayectoria de un proyectil se modela 

como una función del tiempo, hasta la economía, en la que la demanda de un producto se 

establece como función de su precio. En las ciencias biológicas y de la salud, su aplicación es 

absolutamente fundamental. Esto se evidencia, por ejemplo, en la modelización de la tasa de 

crecimiento de un cultivo celular en función de la concentración de nutrientes (Kapur, 2023), en 

la dependencia de la respuesta de un paciente a un tratamiento respecto a la dosis administrada, 

o en la evolución temporal de la concentración de un fármaco en el torrente sanguíneo tras su 

ingesta (Rowland & Tozer, 2010).  

Por eso, usar funciones es clave para crear modelos cuantitativos, predecir fenómenos y entender 

cómo funcionan los sistemas complejos. Como sugiere Strogatz (2019), el cálculo, junto con las 

funciones que lo sustentan, nos ofrece una ventana a las leyes profundas del universo; creemos 

que, para un futuro profesional de la salud, esta herramienta debe enfocarse en su propio campo: 

la dinámica de las epidemias, la farmacocinética o los ritmos biológicos. 

Aun así, los cursos universitarios de introducción, sobre todo los de cálculo, suelen concentrarse 

en un conjunto estándar de funciones (polinómicas, exponenciales, logarítmicas, 

trigonométricas) y en técnicas de derivación e integración (Bressoud et al., 2016; Carrión & 

Flores, 2023). Esta tendencia coincide con lo que la investigación en didáctica del cálculo 

(Dreyfus et al., 2021; Thompson & Harel, 2021) también ha señalado sobre estas dinámicas 

curriculares limitantes. Aunque este conocimiento es fundamental, con frecuencia deja de lado 

una gama más amplia de funciones, o aplicaciones concretas de las que ya se conocen, que son 

de gran valor práctico en las ciencias aplicadas. 
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Para cubrir esta carencia, en este artículo presentamos funciones matemáticas que, si bien no 

siempre son centrales en los libros de texto, son muy útiles para estudiantes de biología, ciencias 

de la salud y campos relacionados. Nuestro objetivo es mostrar lo útiles y aplicables que son 

estas funciones, incluso para quienes solo tienen una formación matemática básica. Así, creemos 

que la comprensión y el uso de modelos funcionales (que mejoran el análisis cuantitativo y la 

modelización) pueden desarrollarse sin necesidad de un dominio avanzado del cálculo, sobre 

todo con enfoques conceptuales y contextualizados. 

Nuestra propuesta se basa en una revisión de la historia y la pedagogía del concepto de función. 

Luego, destacamos la importancia crucial de la modelización en ciencias de la salud para, al 

final, presentar el corazón de nuestro trabajo: un marco didáctico integral que pone en práctica 

las estrategias pedagógicas más efectivas. Este marco será ilustrado con dos ejemplos detallados 

de funciones clave, concluyendo con una discusión sobre su integración y los resultados 

esperados de su aprendizaje. 

2. El Concepto de Función: Un Viaje a Través de su Historia y su Enseñanza 

A pesar de ser central en la enseñanza actual, el concepto de función ha tenido una evolución 

histórica compleja. Si bien la idea de dependencia ya asomaba en las matemáticas babilónicas 

y griegas, la noción formal que usamos hoy tardó siglos en consolidarse. En el siglo XVII, con 

la llegada del cálculo (Newton y Leibniz), las funciones se entendían sobre todo como fórmulas 

algebraicas (Kleiner, 1989); Leibniz fue el primero en usar el término "función". Matemáticos 

como Euler la expandieron en el siglo XVIII, pero la idea seguía muy ligada a expresiones 

analíticas. Fue en el siglo XIX cuando la definición cambió radicalmente, volviéndose más 

abstracta. En 1837, Dirichlet propuso una correspondencia arbitraria entre dos conjuntos de 

números, sin que fuera necesaria una fórmula algebraica (Kleiner, 1989). Esto abrió la puerta a 

funciones con comportamientos más complejos, como las discontinuidades. 

Estudios en didáctica de la matemática (Sfard, 1991; Artigue, 2000; Font et al., 2007) han 

señalado aspectos clave y dificultades frecuentes en cómo los estudiantes aprenden este 

concepto. Se ha investigado a fondo el reto que supone para los estudiantes desarrollar el 

razonamiento covariacional (Thompson & Carlson, 2017) y la importancia de crear guías 

pedagógicas específicas para superar estas dificultades (Rodríguez et al., 2024). 
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Estos descubrimientos son directamente relevantes y cruciales para la enseñanza en ciencias de 

la salud. Las dificultades que la investigación didáctica ha señalado no son solo teóricas; se ven 

reflejadas en la incapacidad de los estudiantes para modelar y entender fenómenos biológicos 

clave. Por ejemplo, la dificultad para consolidar la función como un objeto conceptual (Sfard, 

1991) explica por qué un estudiante puede ser capaz de calcular la concentración de un fármaco 

en un instante específico (una visión procesal), pero le cuesta analizar el comportamiento global 

de la curva para entender conceptos cruciales como la vida media o el área bajo la curva. 

Igualmente, la falta de un buen razonamiento covariacional (Thompson & Carlson, 2017) es la 

razón principal por la que muchos estudiantes no entienden cómo la velocidad de propagación 

de un virus varía con el tiempo. Esto demuestra que una enseñanza efectiva debe ir más allá de 

solo mostrar fórmulas. Debe abordar directamente estos desafíos cognitivos, usando el contexto 

de la salud como un camino para construir un entendimiento profundo y significativo. 

3. Aspectos Críticos en la Enseñanza del Concepto de Función 

Enseñar el concepto de función es clave en matemáticas, pero su carácter abstracto y sus 

múltiples facetas plantean importantes desafíos pedagógicos. Si queremos que los estudiantes 

desarrollen una comprensión profunda que vaya más allá de memorizar y mecanizar, es esencial 

abordar los siguientes puntos críticos, señalados por varias investigaciones (Ugalde, 2013; 

Álvarez et al., 2023; Trujillo et al., 2023; Rodríguez et al., 2024): 

Múltiples representaciones: Es fundamental que los estudiantes se familiaricen y manejen con 

soltura las distintas representaciones: verbal, algebraica (fórmula), tabular (tabla de valores) y 

gráfica. Saber traducir entre estas representaciones es vital para una comprensión sólida (Bardini 

et al., 2014; Vargas et al., 2016). 

Distinción entre función y ecuación: Es común confundir función y ecuación. Hay que insistir 

en que la función describe una relación de asignación o dependencia, mientras que una ecuación 

expresa una igualdad específica entre expresiones (Trujillo et al., 2023; Tularam & Hassan, 

2025). 

El papel de la variable: Es clave entender la diferencia entre variables independiente y 

dependiente, y cómo la función relaciona los valores de una con la otra (ej., Thompson & 

Carlson, 2017). 
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Dominio y rango: Identificar correctamente el conjunto de valores de entrada válidos (dominio) 

y de salida posibles (rango o imagen) suele ser un punto difícil que necesita una atención 

didáctica clara (Trujillo et al., 2023). 

Naturaleza dual proceso-objeto: Podemos ver las funciones tanto como un proceso (una serie 

de operaciones sobre un valor de entrada) como un objeto (una entidad matemática con sus 

propias propiedades). Pasar de entender la función como un proceso a verla como un objeto es 

un paso cognitivo importante. Este concepto, presentado por Sfard (1991), sigue siendo 

relevante y un área activa de estudio (Pérez et al., 2025). 

Covariación: Comprender cómo las variables de una función varían conjuntamente es 

fundamental para interpretar su comportamiento. Esta relación, denominada covariación, se 

entiende como el proceso de coordinación de los cambios simultáneos entre dos cantidades 

relacionadas (Arzarello, 2019; Thompson, & Carlson, 2017. 

4. Estrategias Pedagógicas para la Enseñanza de Funciones 

Para superar los retos que plantea el aprendizaje de funciones, la investigación en didáctica de 

la matemática apunta a un conjunto de estrategias pedagógicas clave. Las ideas que presentamos 

a continuación, basadas en los estudios citados, proponen un enfoque de enseñanza activo y 

contextualizado. Su objetivo principal es dar sentido a los conceptos abstractos a través de la 

modelización, la tecnología y el aprendizaje colaborativo. Para lograr una comprensión sólida, 

usamos estas estrategias: 

Contextualización fuerte: Conectar directamente la función con situaciones reales y problemas 

relevantes para la disciplina del estudiante (Blum & Niss, 1991; Lesh & Doerr, 2003; Pazos & 

Aguilar, 2024). Esto da un significado genuino a las ideas matemáticas abstractas. 

Uso Estratégico de tecnología: Incorporar herramientas digitales, como graficadores dinámicos 

(GeoGebra, Desmos), para facilitar la exploración, la experimentación y la comprensión de los 

conceptos, y no solo para realizar cálculos (Marina et al., 2021; Juandi et al., 2021; Chechan et 

al., 2023). 
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Modelado activo: Implicar a los estudiantes en la creación de modelos matemáticos con 

funciones a partir de datos o situaciones reales, lo que ayuda a desarrollar su pensamiento crítico 

y su habilidad para resolver problemas (Lebrun et al., 2025; Chavarría & Gamboa, 2024). 

Aprendizaje colaborativo y discursivo. Impulsar el debate en grupos de trabajo, animando a 

verbalizar ideas, aclarar conceptos y construir conocimiento de forma conjunta (Stillman, 2019). 

Énfasis en la interpretación y comunicación: Los estudiantes deben aprender a interpretar el 

significado de la función y sus características en el contexto del problema, y a comunicar sus 

hallazgos de forma clara y precisa (Torres & Jarquín, 2023). 

Atención a las dificultades conceptuales: El profesor debe conocer las dificultades frecuentes 

relacionadas con el concepto de función (Díaz, 2008; Trujillo et al., 2023) y tratarlas de forma 

clara durante la enseñanza. 

5. Funciones como Pilares de la Modelación en Biología y Ciencias de la Salud 

La modelización matemática es el proceso —a la vez arte y ciencia— de traducir problemas, 

observaciones y preguntas del mundo real al lenguaje riguroso de las matemáticas. Este proceso 

implica la creación de una representación simplificada –un modelo– mediante el empleo de 

ecuaciones y, crucialmente, funciones para describir las relaciones entre variables (Montesinos 

& Hernández, 2007; Nijhout et al. 2015; Espinosa et al. 2023; Basaure, 2025). La importancia 

de la modelación en los campos de la biología y las ciencias de la salud es profunda y 

multifacética, evidenciada en los siguientes aspectos clave: 

Comprensión de la complejidad: Los modelos matemáticos proporcionan un marco analítico 

para el desglose y la interpretación de sistemas biológicos complejos. Al formalizar las 

interacciones entre sus componentes, permiten identificar mecanismos clave, puntos de control 

y dinámicas emergentes que, de otro modo, serían difíciles de discernir en sistemas de alta 

dimensionalidad (Best, 2023) 

Predicción y pronóstico: Una vez rigurosamente validados con datos empíricos, los modelos 

adquieren la capacidad de predecir el curso futuro de fenómenos biológicos y patológicos. Esto 

es fundamental para la anticipación de la propagación de enfermedades infecciosas (Montesinos 
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& Hernández, 2007; Espinosa et al., 2023) o la estimación de las concentraciones de un fármaco 

en el organismo a lo largo del tiempo (Rang et al., 2011), entre otros escenarios clínicos. 

Formulación y prueba de hipótesis: La propia iteración entre construcción y análisis de modelos 

cataliza la formulación de hipótesis precisas y cuantitativamente verificables. Los modelos 

permiten explorar escenarios hipotéticos ("qué pasaría si") y confrontar sus predicciones con 

resultados experimentales, lo cual refina la comprensión y orienta la investigación empírica 

(Nijhout et al., 2015; Best, 2023; Basaure, 2025). 

Optimización de intervenciones: En el ámbito de la salud pública y la medicina clínica, los 

modelos matemáticos son herramientas indispensables para la optimización de estrategias. 

Facilitan la toma de decisiones informadas, desde la planificación de campañas de vacunación 

y la asignación eficiente de recursos hospitalarios, hasta la individualización de regímenes 

terapéuticos (Montesinos & Hernández, 2007; Espinosa et al., 2023) 

Descubrimiento de nuevas relaciones: Más allá de consolidar el conocimiento existente, el 

proceso de modelado es intrínsecamente heurístico. Con frecuencia, la formalización 

matemática de un sistema revela relaciones inesperadas, propiedades emergentes o dinámicas 

no intuitivas, abriendo así nuevas vías para la investigación teórica y experimental y propiciando 

descubrimientos significativos (Strogatz, 2019). 

Dentro de este panorama, las funciones constituyen el eje central de todos estos modelos, ya que 

toda interacción, proceso de cambio o dependencia se describe mediante ellas. La selección y 

formulación de la función adecuada representa un aspecto crucial para capturar la esencia del 

fenómeno en estudio sin introducir una complejidad superflua. El marco didáctico y los 

ejemplos que lo ilustran explorarán funciones fundamentales para la construcción y el análisis 

de estos modelos. 

6. Un Marco Didáctico Integral para la Enseñanza de Funciones y la Modelización en 

Ciencias de la Salud 

La enseñanza de las matemáticas en ciencias de la salud, frecuentemente se confronta con el 

desafío de conectar abstracciones teóricas con aplicaciones prácticas. Los currículos 

tradicionales pueden obviar la riqueza de funciones no canónicas y la importancia de la 
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modelización. Para abordar esta brecha y materializar las ideas pedagógicas presentadas 

(Ugalde, 2013; Correa & García, 2020; Álvarez et al., 2023), proponemos un marco didáctico 

de seis fases. Este marco no es solo una secuencia de actividades, sino la materialización de 

principios didácticos clave, y está orientado a fomentar una "alfabetización funcional" 

(Eisenberg, 1992) y guiar activamente a los estudiantes en la transición de una comprensión 

procesal a una objetual del concepto de función (Sfard, 1991) 

6.1 Principios Fundamentales del Marco Didáctico 

Este marco se fundamenta en los siguientes principios, derivados de la investigación en didáctica 

de la matemática y la modelización: 

Contextualización auténtica: Anclar el aprendizaje en problemas reales y significativos de las 

ciencias de la salud, con el fin de generar una necesidad genuina del conocimiento matemático 

y su aplicabilidad. 

Descubrimiento guiado: Posicionar al estudiante como un constructor activo de su 

conocimiento, orientándolo a través de la exploración, la experimentación y la formulación de 

conjeturas. 

Fluidez en múltiples representaciones: Fomentar la capacidad de transitar y establecer 

conexiones conceptuales entre las representaciones verbal, tabular, gráfica y algebraica de una 

función. 

Uso estratégico de la tecnología: Integrar herramientas digitales (ej., Desmos, GeoGebra) como 

facilitadores de la exploración, la experimentación y la comprensión conceptual, trascendiendo 

su uso como meros calculadores. 

Desarrollo del pensamiento crítico: Ir más allá de la mera aplicación de fórmulas, analizando 

los supuestos, las limitaciones y las implicaciones de los modelos matemáticos en contextos 

reales. 

Enfoque procesal-objetual: Facilitar que el estudiante conciba las funciones tanto como una 

secuencia de operaciones (proceso) como una entidad matemática con propiedades inherentes 

(objeto). 
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6.2 Fases del Marco Didáctico Integral 

Cada función matemática seleccionada puede ser abordada siguiendo estas seis fases, que guían 

al docente en la implementación de una pedagogía centrada en el estudiante y la aplicación 

contextualizada. 

Tabla 1. Fases del Marco Didáctico Integral 

Fase Título Descripción y Fundamentación 

1 Contextualización 

y Dilema 

Presentamos un problema real y relevante del área de la salud que genera 

un dilema, provocando un conflicto cognitivo. Proponemos preguntas 

abiertas para debatir, activando los conocimientos previos y mostrando la 

necesidad de crear un modelo matemático. 

Conexión: Sección 1 (Función como lenguaje), Sección 5 (Problema 

como punto de partida para modelado), Sección 4 (Contextualización 

fuerte). 

2 Cuantificación y 

Observación 

Se orienta la traducción del problema verbal a datos concretos, 

organizando la información en tablas. Luego, se hacen cálculos iniciales 

para observar patrones y cómo varían las variables, sentando las bases 

para crear el modelo. 

Conexión: Sección 3 (Múltiples Representaciones - Tabular, Papel de la 

Variable, Covariación). 

3 Visualización y 

Descubrimiento 

Usamos graficadores dinámicos para visualizar los datos. El objetivo de 

esta fase es que los estudiantes descubran la forma y el comportamiento 

general del fenómeno, facilitando que hagan conjeturas sobre el tipo de 

función que lo describe. 

Conexión: Sección 3 (Múltiples Representaciones - Gráfica, Naturaleza 

Dual Proceso-Objeto), Sección 4 (Uso de Tecnología). 

4 Formalización y 

Exploración 

Paramétrica 

Introducimos la representación algebraica de la función como herramienta 

para el modelo. Usando deslizadores en herramientas tecnológicas, se 

explora y entiende de forma interactiva el papel y significado de cada 

parámetro en el contexto del problema. 

Conexión: Sección 3 (Múltiples Representaciones - Algebraica, 

Naturaleza Dual Proceso-Objeto, Distinción Función/Ecuación), Sección 

4 (Uso de Tecnología). 

5 Construcción y 

Validación del 

Modelo 

Determinamos los valores específicos de los parámetros del modelo a 

partir de los datos iniciales. El modelo resultante se construye y valida 

gráficamente con la tecnología, combinando las representaciones para 

confirmar que se ajusta. 

Conexión: Sección 5 (Proceso de ajuste del modelo), Sección 

4 (Modelado Activo, Énfasis en la Interpretación y Comunicación). 
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6 Análisis Crítico e 

Implicaciones 

Fomentamos la reflexión sobre las predicciones del modelo, sus supuestos 

y sus limitaciones en el contexto real. Este análisis busca no solo 

desarrollar el juicio profesional, sino también la humildad intelectual ante 

el poder predictivo de los modelos. 

Conexión: Sección 5 (Discusión de supuestos y limitaciones), Sección 

4 (Énfasis en la Interpretación y Comunicación, Atención a Dificultades 

Conceptuales). 

6.3 Aplicación del Marco: Ejemplos Didácticos Detallados 

Para mostrar cómo aplicar este Marco Didáctico Integral, presentaremos a continuación dos 

ejemplos de funciones matemáticas esenciales en ciencias de la salud. Estos ejemplos siguen 

cada una de las seis fases, mostrando cómo se puede impulsar una comprensión profunda y 

contextualizada, preparando a los estudiantes para modelar cuantitativamente en sus áreas de 

estudio. 

Ejemplo 1: Modelando la Dinámica de un Brote Epidémico con la Función Logística 

Objetivo General: Con esta secuencia didáctica, los estudiantes entenderán la función logística 

no solo como una fórmula, sino como una herramienta predictiva y analítica esencial para 

gestionar recursos en situaciones de crecimiento limitado, como un brote epidémico. Buscamos 

que identifiquen sus parámetros, interpreten su comportamiento y reconozcan sus implicaciones 

clínicas y de salud pública. 

(Crédito del Ejemplo): Este caso didáctico es una adaptación simplificada de modelos 

epidemiológicos conocidos, basado en los trabajos clásicos de Verhulst (1838) y su aplicación 

actual en textos como los de Best (2023) y Kapur (2023). La pandemia de COVID-19 demostró 

la relevancia y el poder predictivo de este modelo, que fue clave para proyectar la propagación 

inicial del virus, como se ve en los influyentes estudios de Li et al. (2020) y Wu et al. (2020). 

Fase 1: Contextualización y Dilema de Salud Pública (Representación Verbal) 

Objetivo: Captar la atención de los estudiantes con un problema real y muy relevante en salud 

pública, para que entiendan la necesidad de un modelo matemático. 

Docente: Imaginen que forman parte del equipo de epidemiología de un gran campus 

universitario. El campus cuenta con una población estudiantil de 500 estudiantes y representa 
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un entorno relativamente aislado. Se ha detectado un nuevo brote de un virus altamente 

contagioso.” 

Los datos iniciales son: El día 0 (cuando se detecta el brote), hay 2 estudiantes infectados. Una 

semana después, el día 7, la cifra sube a 50 estudiantes. Además, al día 10 se registraron 160 

casos, y para el día 14, el número llegó a 385 infectados. 

Como equipo, necesitan resolver preguntas clave para manejar esta crisis: ¿Cuántos estudiantes, 

en total, podrían infectarse? ¿Cuándo será el momento de mayor número de contagios nuevos, 

y cuándo se requerirá el máximo de recursos hospitalarios? 

(Debate Inicial en Grupos Pequeños): Las preguntas abiertas impulsan el debate y el 

pensamiento crítico de los estudiantes, ayudándolos a reconocer la idea de un crecimiento 

limitado, que es el concepto central que modela la función logística. 

¿Consideran que el número de infectados crecerá indefinidamente? ¿Qué factores limitarían la 

propagación del virus en el campus? ¿Podría el brote crecer siempre al mismo ritmo 

(linealmente)? ¿O aceleraría y luego desaceleraría? ¿Por qué? Si el virus fuera una 'máquina de 

contagio', ¿cuál sería su 'velocidad máxima' de propagación? ¿Y cuándo la alcanzaría?" 

Fase 2: Recopilación de Datos y Observación del Fenómeno (Representación Tabular) 

Objetivo: Organizar la información en una tabla para facilitar el análisis inicial y ver cómo 

evoluciona el brote, ayudando a los estudiantes a pasar de una descripción verbal a datos 

numéricos. 

Tabla 2. Interpretación de los datos 

Tiempo t (días) Población infectada 

L(t) 

Interpretación 

   

0 2 Inicio del brote (condición 

inicial L0) 

7 50 Datos de la primera semana 

10 160 Dato de monitoreo adicional 

14 385 Dato de monitoreo adicional 

Población Total 500 Límite máximo de contagio 

(Capacidad de Carga K) 
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(Actividad en el cuaderno): Ahora calculen el promedio de nuevos infectados por día durante la 

primera semana (del día 0 al 7). (Respuesta esperada: (50-2)/7 ≈ 6.9 casos/día). A este valor le 

llamaremos tasa de contagio. 

Calculen la tasa de contagio entre el día 7 y el 10. (Respuesta esperada: (160-50)/(10-7) = 110/3 

≈ 36.67 casos/día) 

Calculen la tasa de contagio entre el día 10 y el 14. (respuesta esperada: (385-160)/(14-10) = 

225/4 ≈ 56.25 casos/día) 

Los estudiantes convierten la descripción en datos numéricos. Es importante ver cómo estas 

tasas cambian. ¿Permanecen constantes o, como se hipotetizó, el ritmo de contagios varía? Esto 

nos muestra que un modelo lineal no bastará para describir cómo avanza el brote, y que el 

crecimiento inicial es acelerado." 

Fase 3: Visualización del Patrón de Crecimiento (Representación Gráfica y Tecnología) 

Objetivo: Que los estudiantes descubran visualmente la curva sigmoide (con forma de 'S') de 

forma más clara gracias a los datos adicionales. Esto establecerá una conexión intuitiva con el 

concepto de crecimiento limitado y usará la tecnología como apoyo visual. 

Docente: "Para visualizar la trayectoria del brote, la representación gráfica es una herramienta 

esencial. Se utilizará un graficador dinámico como Desmos o GeoGebra. Aquí utilizaremos 

Desmos para graficar porque es fácil de usar, y rápido para graficar funciones en 2D. 

https://www.desmos.com/?lang=es 

Introduzcan todos los puntos de datos de nuestra tabla en el graficador: (0, 2), (7, 50), (10, 160), 

y (14, 385).  

Se guía a los estudiantes para que reflexionen sobre un rango de visualización apropiado. Se les 

pregunta qué valores mínimos y máximos en los ejes son necesarios para observar todos los 

datos conocidos y la evolución futura del brote. Basándose en el contexto, es esperable que 

concluyan que el eje Y debe superar los 500 infectados (la población total). A continuación, se 

les pide que representen gráficamente este límite poblacional con una línea horizontal. Es en 

este momento, al conectar el contexto del problema con su representación visual, que se 

https://www.desmos.com/?lang=es
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introduce formalmente el concepto de asíntota horizontal como la formalización matemática de 

esta "capacidad de carga" (K) del sistema. Ver Figura 1. 

 

Figura 1. Infectados por día 

(Actividad de Conjetura Visual): Observen los puntos y la línea K. Si la curva empieza en 2, 

sube a 385 y no puede pasar de 500, ¿qué forma general creen que tendrá? ¿Cómo se comporta 

la curva al principio, en medio y al final, en relación con la línea K? Animamos a los estudiantes 

a que dibujen mentalmente o en sus notas la forma general que esperan de la curva, uniendo los 

puntos y respetando la asíntota. La discusión se enfoca, con preguntas, en que los estudiantes 

expresen si la curva parece acelerarse y luego desacelerarse, ayudándolos a reconocer la forma 

de 'S' (sigmoide). 

Esta visualización, posible gracias a la tecnología, no solo da la respuesta, sino que sirve de 

apoyo visual para que los estudiantes hagan conjeturas fundamentadas. Así, se desarrolla una 

'sensación por las funciones' (Eisenberg, 1992) y se confirma que la forma de 'S' es la que mejor 

representa un brote con crecimiento limitado. 

Fase 4: Introducción del Modelo Matemático y Exploración Paramétrica (Representación 

Algebraica y Tecnología) 

Objetivo: Presentar la función logística como la herramienta matemática idónea y permitir a los 

estudiantes explorar de forma interactiva cómo cada parámetro afecta la forma y velocidad de 

la curva, logrando una comprensión profunda de la fórmula. 

https://www.desmos.com/calculator/s5rmtwkyhp
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Docente: "La forma de 'S' que los estudiantes han visualizado corresponde a la Función 

Logística. Este es un modelo matemático robusto para sistemas con crecimiento limitado, y su 

fórmula general es: 

𝐿(𝑡) =
𝐾

1 + 𝐴𝑒−𝑟𝑡
 

Cada parámetro en esta fórmula posee un significado concreto en el contexto de nuestro brote. 

Se explorará su impacto utilizando los deslizadores (sliders) en Desmos: 

Los estudiantes escribirán la fórmula L(t) = K / (1 + A * e^(-r*t)) en Desmos creando los 

deslizadores para K, A, y r. 

En Desmos, al escribir la fórmula, se generan automáticamente los deslizadores. Se instruye a 

los estudiantes para que ajusten el valor del deslizador K a 500, correspondiente a la capacidad 

de carga ya identificada. 

Una vez introducida la fórmula, se guía a los estudiantes en una exploración interactiva para 

construir el significado de cada parámetro en el contexto del brote. 

Exploración del Parámetro r (Tasa de Crecimiento): 

Comenzamos la exploración pidiendo a los estudiantes que comparen el efecto de un valor de r 

bajo (ej., 0.1), que crea una curva de crecimiento lento, con un valor más alto (ej., 1.0), que 

produce una curva más pronunciada. Con esta comparación, les ayudamos a concluir que r 

controla la velocidad o "agresividad" con la que se propaga el virus. De esta reflexión se infiere 

que un intervalo de exploración como [0, 2] es adecuado. 

Exploración del Parámetro A (Condiciones Iniciales): 

Conectamos el parámetro A con las condiciones iniciales del problema. Primero, analizamos el 

escenario real (L(0)=2), donde A = (500-2)/2 = 249, un valor grande. Los estudiantes observan 

que esto corresponde a una fase inicial larga y plana. Luego, planteamos un escenario hipotético 

con un brote más avanzado (L(0)=100), donde A = (500-100)/100 = 4, un valor pequeño. En 

este caso, observan que la fase de crecimiento acelerado es casi inmediata. 

Así, concluyen que A representa la relación entre la población total y el tamaño del brote en el 

momento de la detección, indicando el "retraso" antes de que los contagios se disparen. Por ello, 

un intervalo de exploración como [0, 500] tiene sentido. 
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Esta exploración tecnológica ayuda a los estudiantes a entender la función no solo como una 

operación, sino como un objeto matemático cuyas propiedades pueden manipular visualmente, 

desarrollando una 'sensación' sobre cómo estos parámetros controlan la dinámica de un brote. 

Ver  Figura 2. 

 

Figura 2. Exploración paramétrica 

Fase 5: Derivación del Modelo Específico y Validación (Síntesis de Representaciones) 

Objetivo: Calcular los parámetros exactos del modelo usando los datos iniciales y validar 

visualmente su ajuste con la tecnología, combinando las representaciones para lograr un modelo 

predictivo sólido. 

Docente: "Ahora que hemos entendido el impacto de cada parámetro y visto la forma general 

de la curva, vamos a calcular los valores exactos para el brote de nuestro campus. Utilizaremos 

los datos originales más fiables: la población total (K), el número de infectados en t=0 (L(0)), y 

el número de infectados en t=7 (L(7)). 

Cálculo de A (la constante inicial): Para encontrar A, la despejamos de la función logística 

cuando t=0: 

𝐿(0) =
𝐾

1+𝐴𝑒−𝑟0 =
𝐾

1+𝐴
. Despejando A: 𝐴 =

𝐾−𝐿(0)

𝐿(0)
.  

Con K = 500 (población total) y L(0) = 2 (infectados iniciales): 𝐴 =
500−2

2
=

498

2
= 249 

Calculando r (tasa de crecimiento intrínseco): Ya tenemos A = 249, K = 500. Sabemos que en t 

=7, L(7) = 50. Sustituimos estos valores en la ecuación logística, 

https://www.desmos.com/calculator/n9ljs2qqss
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50 =
500

1 + 249𝑒−7𝑟
 

De esta ecuación despejamos la tasa de crecimiento r de infectados por día 

50(1 + 249𝑒−7𝑟) = 500 

1 + 249𝑒−7𝑟 = 10 

𝑒−7𝑟 =
9

249
. Se aplica el logarítmo natural en ambos lados para despejar r, y se tiene, 

−7𝑟 = ln (
9

249
) = −3.327 

De donde 𝑟 = 0.475.  (Redondeando a tres decimales). 

El modelo de brote se ha completado. La función específica que describe la propagación del 

virus en en el campus es: 

𝐿(𝑡) =
500

1 + 249𝑒−0.475𝑡
 

(Validación en Desmos): Pedimos a los estudiantes que introduzcan esta ecuación final en su 

graficador. ¿Pasa exactamente por los puntos (0, 2) y (7, 50) que usamos para calcular los 

parámetros? Más importante aún, ¿cómo se ajusta esta curva a los puntos adicionales 

observados, (10, 160) y (14, 385)? ¿Y se 'pega' bien a la asíntota y = 500? Sí, el modelo 

construido se ajusta perfectamente a los datos observados y predice la curva sigmoide. Ver  

Figura3.  

 

Figura 3. Validación del modelo. 

https://www.desmos.com/calculator/7btf9gqndu
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Fase 6: Predicción, Interpretación del Punto de Inflexión y Análisis Crítico (Pensamiento 

Aplicado) 

Objetivo: Usar el modelo para hacer predicciones importantes y entender el punto de máxima 

velocidad de propagación (punto de inflexión), clave para planificar recursos, y también para 

fomentar el pensamiento crítico sobre las limitaciones del modelo. 

Docente: "Ahora que tenemos nuestro modelo, podemos hacer las predicciones y análisis 

requeridos por el director del campus: 

¿Cuándo alcanzaremos el punto de máxima velocidad de contagio? 

Este es un momento muy importante en epidemiología, ya que indica el día en que la enfermería 

escolar y los recursos de salud verán el mayor número de casos nuevos diarios. 

Para encontrar el momento de máxima velocidad de contagio, presentamos una propiedad 

fundamental del modelo logístico. Explicamos a los estudiantes que, si bien la demostración 

formal necesita cálculo diferencial (hallar la segunda derivada), el punto de máxima pendiente 

de esta curva —su punto de inflexión— tiene una característica muy útil: sucede justo cuando 

la población llega a la mitad de su capacidad de carga (L = K/2). En nuestro caso, L=K/2 = 500 

/ 2 = 250 infectados. 

Sustituimos estos datos en la logística 

250 =
500

1 + 249𝑒−0.475𝑡
 

Para encontrar el valor del tiempo t en el que L(t)=250 infectados. Despejando t (mediante los 

pasos algebraicos ya empleados para r) encontramos t = 11.6 días. 

Interpretación: El punto de inflexión, y por lo tanto el pico de nuevos contagios diarios, 

probablemente ocurra alrededor del día 11.6 del brote, cuando la mitad del campus ya esté 

infectada (250 estudiantes). Este es el momento de mayor presión sobre los recursos escolares. 

¿Cuántos estudiantes estarán infectados al final de la tercera semana (Día 21)? 

Calculamos L(21) utilizando nuestro modelo 
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𝐿(21) =
500

1 + 249𝑒−0.475(21)
≈ 494 

Interpretación: Al final de la tercera semana, se esperaría que casi la totalidad del campus 

(alrededor de 494 estudiantes) haya sido infectada. 

(Debate Crítico Final): El profesor dirigirá un debate sobre las limitaciones del modelo y sus 

consecuencias prácticas, lo cual es vital para que los estudiantes desarrollen un juicio 

profesional. 

Limitaciones del Modelo: Este modelo parte de la base de que r (la contagiosidad) y K (la 

población susceptible) son constantes. ¿Cómo podría una cuarentena masiva, una campaña de 

lavado de manos o el uso de mascarillas influir en r? ¿Cómo podría la inmunización natural de 

los ya infectados o la retirada de estudiantes enfermos afectar K? 

Implicaciones en Salud Escolar: Finalmente, desafiamos a los estudiantes a convertir este 

hallazgo matemático (t=11.6) en recomendaciones prácticas de salud pública. Se abre un debate. 

¿Qué medidas proactivas deberían tomar las autoridades del campus? (Ej. preparación de la 

enfermería, comunicación con padres, implementación de programas de pruebas rápidas, y 

planes de aislamiento para casos confirmados). 

Esta discusión final es el punto álgido de nuestro marco didáctico: busca transformar al 

estudiante, de ser un simple aplicador de fórmulas a un pensador científico que entiende tanto 

el poder como los límites de la modelización matemática. 

Ejemplo 2. Modelando Ritmos Circadianos con Funciones Senoidales 

Este apartado detalla cómo el ejemplo 2 puede ser abordado en el aula no como un ejercicio de 

sustitución, sino como una actividad de descubrimiento y modelado, en línea con los principios 

pedagógicos del Marco Didáctico Integral. 

Objetivo General: El propósito de esta secuencia es desarrollar en el estudiante la habilidad de 

modelar procesos periódicos biológicos, interpretar los parámetros de una función senoidal en 

un contexto fisiológico, y utilizar herramientas tecnológicas para analizar y predecir el 

comportamiento rítmico. 

(Crédito del Ejemplo): Este problema se inspira en el estudio de los ritmos biológicos, un campo 

fundamental en cronobiología. La modelización de estos ritmos mediante funciones senoidales 
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es un enfoque estándar, como se discute en textos como "Circadian Rhythms" de R. Refinetti 

(2006). Esta adaptación está diseñada para ser explorada con herramientas tecnológicas 

accesibles. En el artículo de Almarhabi, & Almarashi, (2024), se modelan cuatro parámetros 

fisiológicos rítmicos circadianos (temperatura corporal, frecuencia cardíaca, niveles de cortisol 

y niveles de melatonina) utilizando un enfoque multimodelo, por si hay interés en el tema. 

Fase 1: Contextualización y Representación Verbal (El Fenómeno Biológico) 

El docente inicia la clase estableciendo una conexión con una experiencia universal de los 

estudiantes. 

Docente: "Todos hemos experimentado cómo nuestra energía y estado de alerta cambian a lo 

largo del día. A veces nos sentimos con más energía por la mañana, otras por la tarde, y a 

menudo sentimos un bajón de energía en ciertos momentos. Este ciclo diario se conoce como 

ritmo circadiano, y afecta a casi todos los seres vivos. Uno de los indicadores más fiables de 

este ritmo es nuestra temperatura corporal. 

(Planteamiento del Problema): Vamos a analizar el caso de una persona sana. Su temperatura 

corporal promedio es de 37.0°C. Durante el día, fluctúa ±0.5°C respecto a ese promedio. El 

momento en que su temperatura es más alta (el pico) es a las 4 de la tarde (16:00 horas). 

(Preguntas para la discusión en grupo): 

Si el punto más alto es 37.5°C, ¿cuál será la temperatura en el punto más bajo? Si el ciclo se 

repite cada 24 horas, ¿a qué hora creen que ocurrirá el punto más bajo de temperatura? ¿Creen 

que el cambio de temperatura es repentino o gradual y suave? 

Objetivo: La contextualización fuerte se emplea para que el problema matemático adquiera un 

significado biológico inmediato. Las preguntas fomentan el aprendizaje discursivo y 

colaborativo, permitiendo a los estudiantes razonar sobre la naturaleza periódica y simétrica del 

fenómeno antes de ver cualquier fórmula. 

Fase 2: Cuantificación y Representación Tabular (De la Descripción a los Datos Clave) 

Guiamos a los estudiantes para que conviertan la narración en un conjunto de "momentos clave" 

del ciclo diario. De los datos iniciales, extraemos los siguientes puntos: 
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El Pico (Máximo), que nos lo da el problema, ocurre a las t = 16 horas. El Valle (Mínimo), dado 

que el ciclo es de 24 horas, el punto más bajo ocurrirá medio ciclo (12 horas) antes o después 

del pico. Se calcula como 16 - 12 = 4, por lo tanto, a las t = 4 horas 

Los Puntos Medios ocurren justo a mitad de camino temporal entre un pico y un valle. El punto 

medio ascendente (mientras la temperatura sube) está entre el valle (t=4) y el pico (t=16), es 

decir, en (4+16) /2 = t = 10. El punto medio descendente (mientras la temperatura baja) está 

entre el pico (t=16) y el siguiente valle (que ocurre en t = 4 + 24 = 28), es decir, en (16+28) /2 

= t = 22. 

Participar activamente en la creación de la tabla refuerza la comprensión de las propiedades del 

ciclo: amplitud, período y línea media, antes de introducir cualquier fórmula. 

Docente: "Ahora, procederemos a organizar esa información en una tabla de 'momentos clave' 

del día. Un ciclo completo dura 24 horas 

Tabla 3. Temperaturas en momentos clave del día 

Evento Clave Hora del día t (en formato 24h) Temperatura T(t) (°C) 

Pico (Máximo) 16 37.0 + 0.5 = 37.5 

Valle (Mínimo) 4 (12h antes/después del pico) 37.0 - 0.5 = 36.5 

Punto Medio 

(Descendiendo) 

22 (Punto medio entre 16 y 28 37.0 

Punto Medio 

(Ascendiendo) 

10 (Punto medio entre 4 y 16) 37.0 

Objetivo: Se introduce la representación tabular, un paso crucial para estructurar el problema.  

Fase 3: Visualización y Conjetura (Representación Gráfica y Tecnología) 

Se utiliza la tecnología como herramienta de descubrimiento visual. 

Docente: "Abramos un graficador dinámico como Desmos. 

Creen una tabla e introduzcan los cuatro puntos que hemos calculado previamente en la Tabla 

3: (4, 36.5), (10, 37.0), (16, 37.5) y (22, 37.0). Ajusten la vista del gráfico para un rango 

apropiado (eje X de 0 a 30 horas; eje Y de 36 a 38 de temperatura)”. Ver Figura 4. 

https://www.desmos.com/calculator/tfucvjg6ui
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Figura 4. Temperaturas en horas 

Ajusten la ventana de visualización para ver claramente los puntos. 

(Pregunta de conjetura): ¿Qué tipo de curva suave y continua sería adecuada para representar 

estos puntos? ¿Se asemeja a una parábola? ¿A una exponencial? ¿O a una onda repetitiva? 

Describan su forma en sus propias palabras. 

Objetivo: Esta fase usa la tecnología para la exploración. Al ver los datos, los estudiantes pueden 

"observar" la naturaleza oscilatoria y hacer conjeturas sobre la función necesaria, lo que hace 

que el proceso de elegir el modelo sea mucho más intuitivo y menos arbitrario. 

Fase 4: Formalización y Exploración Paramétrica (Representación Algebraica y Tecnología) 

Presentamos la función coseno como la herramienta matemática, pero de manera interactiva. 

Docente: "La forma de onda que identificaron se modela perfectamente con las funciones seno 

o coseno. Elegiremos la función coseno. Su forma general para modelar fenómenos físicos es:" 

𝑇(𝑡) = 𝐴 cos(𝐵(𝑡 − 𝐷)) + 𝐶 

"Vamos a descubrir qué representa cada letra. Escriban esta ecuación en Desmos y creen 

deslizadores para A, B, C y D. Ver Figura 5. 

 

Figura 5. Exploración paramétrica 

https://www.desmos.com/calculator/vfzitqpvu3
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Deslizador C (Desplazamiento Vertical): Muevan C. ¿Qué controla? (Se espera que respondan: 

Mueve toda la onda hacia arriba y hacia abajo. Es el valor central o promedio.) 

Deslizador A (Amplitud): Muevan A. ¿Qué controla? (Se espera que respondan: La altura de 

las crestas de la onda. Es la variación máxima desde el centro.) 

Deslizador B (Periodo): Muevan B. ¿Qué controla? (Se espera que respondan: Hace la onda más 

'apretada' o más 'estirada'. Controla la duración de un ciclo completo (el periodo).) El docente 

introduce la fórmula clave: Periodo = 2π / B. 

Deslizador D (Desplazamiento de Fase): Muevan D. ¿Qué controla? (Se espera que respondan: 

Mueve la onda de izquierda a derecha. Nos permite alinear un pico con un momento 

específico.)" 

Objetivo: La representación algebraica se muestra como una herramienta dinámica. Interactuar 

con los deslizadores ayuda a los estudiantes a construir una comprensión sólida del papel de 

cada parámetro, lo cual es un ejemplo de modelado activo que va más allá de memorizar 

fórmulas. 

Fase 5: Construcción del Modelo y Síntesis (Uniendo Todas las Piezas) 

Los estudiantes ahora usan su nueva comprensión para construir el modelo específico. 

Docente: "Ahora, usemos lo que descubrimos para construir el modelo de nuestro caso 

particular. Vuelvan a los datos originales. 

Encontrar C: ¿Cuál es la temperatura promedio? Es 37.0. Por lo tanto, C = 37.0. 

Encontrar A: ¿Cuánto varía la temperatura desde el promedio? Varía 0.5°C. Por lo tanto, A = 

0.5. 

Encontrar B: ¿Cuánto dura un ciclo completo? 24 horas. Usando la fórmula, 24 = 2π / B. 

Despejando B, obtenemos B = 2π / 24 = π / 12. 

Encontrar D: Sabemos que el pico de la función coseno básica está en t = 0. Pero en nuestro 

problema, el pico ocurre en t =16. Por lo tanto, debemos desplazar la curva 16 unidades a la 

derecha. D = 16. 

(Construcción del Modelo Final): Juntemos todo: T(t) = 0.5cos( (π/12)(t - 16) ) + 37.0 
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(Validación Tecnológica): Introduzcan esta ecuación final en Desmos. ¿Pasa exactamente por 

los puntos de nuestra tabla? (Sí). Hemos creado un modelo exitoso". Ver  Figura 6. 

 

Figura 6. Validación del modelo. 

Objetivo: Esta fase es la culminación del proceso. Se conectan todas las representaciones 

(verbal, tabular, gráfica y algebraica) en un todo coherente. La validación en el software 

proporciona una gratificación inmediata y confirma la corrección del modelo. 

Fase 6: Interpretación, Predicción y Pensamiento Crítico 

El modelo ya no es el fin, sino una herramienta para hacer ciencia. 

Docente (Preguntas de aplicación y reflexión): 

Predicción: Usando nuestro modelo, ¿cuál sería la temperatura corporal de la persona a las 10 

de la noche (t = 22)? Podemos usar la fórmula o, más fácil, hacer clic en la gráfica en Desmos 

en t =22. (Respuesta: 37.0°C). 

Análisis: ¿En qué momentos del día la temperatura es de exactamente 37.25°C? (Los 

estudiantes pueden resolver la ecuación o, más visualmente, graficar la línea y =37.25 y 

encontrar los puntos de intersección). 

Extensión (Pensamiento Crítico): Se plantea a los estudiantes el reto de analizar cómo se 

modificaría el modelo ante cambios fisiológicos. Por ejemplo, si una persona desarrolla fiebre 

y su temperatura promedio aumenta en 1.5 °C, deben identificar qué parámetro del modelo se 

ve afectado y determinar su nuevo valor. En este caso, la fiebre altera la línea base del ritmo, 

modificando el parámetro C (desplazamiento vertical) de 37.0 °C a 38.5 °C. De manera similar, 

se propone reflexionar sobre una situación de ajuste de horario: si la persona viaja 6 h al este y 

https://www.desmos.com/calculator/85kskfb1fn
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su ritmo circadiano se adapta completamente, ¿qué parámetro del modelo se modifica? Los 

estudiantes deberían concluir que el cambio afecta la fase temporal del ciclo, ajustando el 

parámetro D (desplazamiento de fase) de 16 a 10. 

Objetivo: Hacemos hincapié en la interpretación y la comunicación. El modelo sirve para hacer 

predicciones y responder a nuevas preguntas. Las preguntas adicionales invitan a los estudiantes 

a reflexionar sobre las limitaciones y la flexibilidad del modelo, cultivando así una comprensión 

más madura de la modelización científica. 

Esta reflexión final es el paso crucial del marco didáctico. Aquí, el enfoque se desplaza de la 

simple ejecución de cálculos a la construcción de un juicio profesional informado por las 

matemáticas. El objetivo es que el estudiante no solo aplique una fórmula, sino que aprenda a 

cuestionar el modelo: comprendiendo sus supuestos, evaluando sus limitaciones y 

contextualizando sus predicciones de manera responsable. 

7. Ampliando el Repertorio: Retos de Modelización con Otras Funciones Clave 

Las funciones que hemos visto son solo una pequeña muestra del potencial de la modelización 

en ciencias de la salud. Pero hay muchas otras funciones matemáticas importantes para las 

ciencias de la salud, que brindan oportunidades valiosas para ser adaptadas y enseñadas usando 

el Marco Didáctico Integral que proponemos. Invitamos a docentes e investigadores a considerar 

las siguientes funciones como punto de partida para desarrollar sus propias secuencias didácticas 

contextualizadas, fortaleciendo así la "alfabetización funcional" en sus estudiantes. 

7.1. Ilustrando el Marco con Nuevas Funciones 

Hemos seleccionado la Función Escalonada de Heaviside (por su carácter discreto, que difiere 

de las continuas que ya vimos) y la Función de Dosis-Respuesta (por su importancia en 

farmacología y su forma sigmoidal menos evidente). 

7.1.1. La Función Escalonada de Heaviside (o Función Salto Unidad): Modelando 

Umbrales y Cambios de Estado. 

Forma de la Ecuación: 𝐻(𝑥, 𝑎) = {
0 𝑠𝑖 𝑥 < 𝑎
1 𝑠𝑖 𝑥 ≥ 𝑎

 

Esta función es clave para representar cambios discretos y umbrales. Su sencillez la hace ideal 

para introducir a los estudiantes en la modelización de fenómenos binarios. 
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Conexión con el Marco Didáctico Integral: 

 Contextualización y Dilema: Podríamos presentar un problema como activar un tratamiento 

(administrar un fármaco) solo cuando un indicador biológico (ej., nivel de glucosa en sangre) 

sobrepasa un umbral, o la decisión de aplicar una descarga con un desfibrilador (Figuera et al., 

2016). 

Cuantificación y Observación: Los estudiantes podrían analizar tablas de datos donde el 

"output" cambia drásticamente al superar el umbral. 

Visualización y Descubrimiento: Al graficar, se ve de inmediato la discontinuidad de salto, lo 

que la distingue de las funciones continuas que ya se han visto. 

Formalización y Exploración Paramétrica: Se introduce la ecuación, y el parámetro 'a' se explora 

como el punto crítico de activación o cambio de estado. 

Validación y Análisis Crítico: Se validaría el modelo con datos reales o simulados, y se 

discutirían las implicaciones clínicas de definir umbrales, así como los riesgos de falsos 

positivos o negativos. 

Aplicaciones Adicionales: Modelado de la activación/desactivación de genes, comportamiento 

de neuronas tipo "todo o nada". 

7.1.2. La Función de Dosis-Respuesta (Tipo Emax o Hill): Optimización de Tratamientos 

Farmacológicos 

Forma de la Ecuación: 𝐸(𝑐) =
𝐸max  𝐶𝑛

𝐸𝐶50
𝑛 +𝐶𝑛 

La relación entre la dosis de un fármaco y el efecto observado en el organismo es crucial en 

medicina. La Ecuación de Hill, o función de Dosis-Respuesta, ofrece un modelo sigmoidal que 

describe la saturación del efecto. 

Conexión con el Marco Didáctico Integral: 

Contextualización y Dilema: Un problema clásico sería cómo determinar la dosis óptima de un 

medicamento para lograr un efecto terapéutico sin toxicidad, o cómo evaluar la potencia de un 

nuevo fármaco. 
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Cuantificación y Observación: Análisis de datos experimentales de laboratorio o ensayos 

clínicos que relacionan concentración de fármaco con respuesta biológica. 

Visualización y Descubrimiento: La graficación permite observar la curva de saturación 

característica (sigmoidal), identificando regiones de bajo efecto, rápido aumento y meseta de 

efecto máximo.  

Formalización y Exploración Paramétrica: Se introducen los parámetros (Emax, EC50, n) y se 

exploran sus significados en Desmos: Emax como efecto máximo, EC50 como la potencia (dosis 

para el 50% del efecto), y n (coeficiente de Hill) como la sensibilidad de la respuesta. 

Validación y Análisis Crítico: Se ajustaría el modelo a datos reales, interpretando los parámetros 

en términos farmacológicos y discutiendo la importancia de la variabilidad individual o la 

interacción con otros fármacos. 

Aplicaciones Adicionales: Toxicología, unión ligando-receptor (Rowland & Tozer, 2010), 

cinética enzimática. 

7.2. Retos de Modelización para el Docente 

Las funciones presentadas anteriormente son solo una muestra del potencial de la modelización 

en ciencias de la salud. Otras funciones, igualmente relevantes, ofrecen oportunidades 

enriquecedoras para ser adaptadas y enseñadas utilizando el Marco Didáctico Integral 

propuesto. Animamos a los docentes e investigadores a considerar el siguiente conjunto de 

funciones como puntos de partida para desarrollar sus propias secuencias didácticas 

contextualizadas, consolidando así una "alfabetización funcional" en sus estudiantes: 

a) Función de Decaimiento Exponencial 𝑁(𝑡) = 𝑁0𝑒−𝜆𝑡. Para modelar procesos de eliminación 

de fármacos, decaimiento radiactivo de isótopos médicos, o la reducción de una población 

microbiana. 

b) Función Potencia 𝑦 = 𝑎𝑥𝑘: Aplicable en leyes alométricas, como la Ley de Kleiber (𝐵 ∝

𝑀
3

4⁄ ), para estudiar cómo las variables fisiológicas escalan con el tamaño corporal en biología. 

c) Función Logarítmica 𝑦 = 𝑎 ∙ ln(𝑥) + 𝑐, 𝑜 𝑦 = 𝑙𝑜𝑔10(𝑥) + 𝑐: Para modelar la percepción de 

estímulos (Ley de Weber-Fechner) o la cinética de reacciones donde las tasas de cambio 

disminuyen con el tiempo. 
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Cada una de estas funciones ofrece un contexto rico para aplicar las seis fases del Marco 

Didáctico Integral, transformando conceptos abstractos en herramientas para la comprensión de 

fenómenos reales en las ciencias aplicadas y de la salud. 

 8. Aplicación de Estrategias Pedagógicas en la Enseñanza de las Funciones Seleccionadas 

Las secuencias didácticas que hemos detallado en el Marco Didáctico Integral (Ejemplo 1: 

Función Logística; Ejemplo 2: Función Senoidal) son la puesta en práctica de las estrategias 

pedagógicas fundamentales que expusimos. Cada fase de este marco plasma una o varias de 

estas ideas clave: 

Contextualización fuerte: Lo vemos en la Fase 1, donde cada función se presenta a partir de un 

problema real y relevante para la salud (un brote epidémico, los ritmos circadianos), dando un 

propósito claro y motivador al aprendizaje. 

Uso de tecnología: Es clave en las Fases 3 y 4. Herramientas como Desmos permiten ver datos 

y propiedades de las funciones, así como manipular parámetros de forma interactiva, lo que 

facilita el descubrimiento. 

Modelado activo: Lo impulsamos en las Fases 2, 4 y 5. Los estudiantes participan en traducir el 

problema a datos, explorar parámetros y construir el modelo, lo que fomenta directamente el 

desarrollo de su pensamiento crítico. 

Aprendizaje colaborativo y discursivo: Lo impulsamos en la Fase 1 y en cada transición, a través 

de preguntas abiertas y debates que permiten a los estudiantes verbalizar ideas y aclarar 

conceptos. 

Énfasis en la interpretación y comunicación: Es crucial en la Fase 6, donde los estudiantes deben 

traducir los resultados del modelo en implicaciones y acciones concretas en el contexto de la 

salud. 

Atención a las dificultades conceptuales: El marco trata las dificultades (ej. distinguir 

función/ecuación, naturaleza dual proceso-objeto) a lo largo de las fases, utilizando diferentes 

representaciones. 
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Con este enfoque, buscamos que los estudiantes no solo adquieran habilidades computacionales, 

sino que también desarrollen una comprensión conceptual sólida de las funciones y su gran 

utilidad como herramientas. 

 9. Discusión: Del concepto a la práctica a través del modelo didáctico 

Las secuencias didácticas detalladas sirven como una prueba de concepto de nuestro Marco 

Didáctico Integral. Su eficacia reside en organizar la transición clave de entender la función 

como un proceso a verla como un objeto (Sfard, 1991), lo que fomenta una verdadera "sensación 

por las funciones" (Eisenberg, 1992). Este proceso se apoya en dos pilares: la contextualización 

auténtica, que crea la necesidad de aprender matemáticas (Lesh & Doerr, 2003), y el uso 

estratégico de la tecnología como un laboratorio para investigar y hacer conjeturas (Altindis et 

al., 2024). 

La fortaleza del marco se demuestra en su capacidad de generar nuevas ideas. La estructura de 

seis fases es lo bastante flexible para adaptarse a muchas funciones relevantes, como las de 

dosis-respuesta o las leyes de potencia. Así, este trabajo ofrece una herramienta pedagógica 

adaptable, pensada para que los educadores creen sus propias secuencias didácticas y ayuden 

activamente a cerrar la brecha entre el cálculo tradicional y las habilidades de modelización que 

necesitan los futuros profesionales de la salud. 

10. Resultados Esperados: Potenciando el Análisis en las Ciencias Aplicadas y de la Salud 

Implementar este marco didáctico integral no es solo un ejercicio teórico; su objetivo es generar 

los siguientes resultados concretos en los estudiantes: 

Desarrollo del pensamiento cuantitativo crítico: Que adquieran la habilidad de seleccionar, 

justificar y evaluar modelos funcionales en contextos de salud. 

Comprensión de fundamentos científicos: Que establezcan conexiones entre funciones y teorías 

clave (ej. Ley de Kleiber, 1932; farmacocinética de Rowland & Tozer, 2010; dinámica 

epidémica de Li et al., 2020). 

Habilidad para la modelización informada: Que sean capaces de construir modelos más allá de 

un simple ajuste de curvas, teniendo en cuenta sus supuestos y limitaciones (Pazos & Aguilar, 

2024). 
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Mejor interpretación de la literatura científica: Una evaluación más crítica de los modelos 

presentados en publicaciones. 

En resumen, buscamos que los estudiantes estén totalmente preparados para aplicar estos 

modelos de forma significativa y reflexiva, entendiendo, por ejemplo, las implicaciones de un 

brote epidémico descrito por una función logística (Kapur, 2023) o la dinámica de un ritmo 

circadiano modelado sinusoidalmente (Refinetti, 2006). 

11. Conclusiones: El Poder Descriptivo y Predictivo de las Funciones en Acción 

Las funciones matemáticas que hemos explorado son herramientas esenciales y versátiles para 

modelar en biología, salud y otras ciencias aplicadas. Su facilidad de comprensión, su capacidad 

descriptiva y predictiva, y su base en décadas de investigación científica y educativa, las hacen 

un conocimiento indispensable. 

En este artículo, hemos buscado integrar la presentación de estas funciones con su contexto 

histórico, sus bases teóricas y las consideraciones pedagógicas importantes (Kleiner, 1989; 

Vinner & Dreyfus, 1989; Katz, 2023), incluyendo puntos de vista de la didáctica de las 

matemáticas (Díaz, 2007, 2008). El Marco Didáctico Integral que proponemos es fundamental 

para poner en práctica estas ideas, mostrando cómo, mediante fases estructuradas, la 

contextualización, la visualización con tecnología y el pensamiento crítico, los estudiantes 

pueden lograr una comprensión profunda y práctica de estas herramientas matemáticas. 

Nuestro objetivo final es fomentar una "alfabetización funcional" que dé a los futuros 

profesionales de la salud confianza y una visión matemática. Así, podrán usar los modelos no 

solo para describir lo que ven, sino para tomar decisiones informadas que ayuden a cambiar el 

mundo, mejorando el juicio clínico y, en última instancia, el bienestar de sus pacientes. 
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